Pythagorean Theorem Calculator

Calculate the missing side of a right triangle using the Pythagorean theorem: a² + b² = c². Enter any two sides to find the third side instantly.

Find Hypotenuse (c)

Enter the lengths of both legs (a and b) to calculate the hypotenuse (c).

a b c
c = √(a² + b²)
5.00 cm

Hypotenuse length with sides a = 3 cm and b = 4 cm

Step-by-step solution:
1. Apply Pythagorean theorem: c² = a² + b²
2. Substitute values: c² = 3² + 4² = 9 + 16 = 25
3. Take square root: c = √25 = 5.00 cm

Find Side a (leg)

Enter the hypotenuse (c) and the other leg (b) to calculate side a.

a b c
a = √(c² - b²)
3.00 cm

Side a length with hypotenuse c = 5 cm and side b = 4 cm

Step-by-step solution:
1. Rearrange Pythagorean theorem: a² = c² - b²
2. Substitute values: a² = 5² - 4² = 25 - 16 = 9
3. Take square root: a = √9 = 3.00 cm

Find Side b (leg)

Enter the hypotenuse (c) and the other leg (a) to calculate side b.

a b c
b = √(c² - a²)
4.00 cm

Side b length with hypotenuse c = 5 cm and side a = 3 cm

Step-by-step solution:
1. Rearrange Pythagorean theorem: b² = c² - a²
2. Substitute values: b² = 5² - 3² = 25 - 9 = 16
3. Take square root: b = √16 = 4.00 cm

Pythagorean Theorem: Quick Framework

1. Core Formula

a² + b² = c² (c = hypotenuse)

2. Solve Patterns

3. Sanity Checks

4. Triples (Fast Validation)

3‑4‑5, 5‑12‑13, 7‑24‑25, 8‑15‑17, scale by k for infinitely many.

5. Extensions

6. Pitfalls

7. Micro Examples

6,8 → c=√(36+64)=10

c=13, b=5 → a=√(169−25)=12

8. Mini FAQ

9. Action Tip

In code comparing distances, compare squared values to avoid √ cost.