Right Triangle: Quick Solve Framework
1. Core Relationships
- a² + b² = c²
- sin A = a/c, cos A = b/c, tan A = a/b
- A + B = 90° (since C = 90°)
- Area = ab/2 ; Perimeter = a + b + c
2. Fast Solve Flow
- Two legs? → c via √(a²+b²); then angles via tan⁻¹(a/b).
- Leg + hyp? → other leg √(c²−known²).
- Leg + acute angle? → use trig ratios; compute c, other leg.
- Hyp + angle? → a = c sin A, b = c cos A (or swap).
3. Sanity Checks
- c must be longest side.
- Angles A,B both < 90° and sum to 90°.
- Ratios consistent: (a/c)² + (b/c)² ≈ 1.
4. Special Patterns
3‑4‑5, 5‑12‑13, 8‑15‑17 speed validation; 45‑45‑90 → legs equal; 30‑60‑90 → short:long:hyp = 1:√3:2.
5. Pitfalls
- Using degrees vs radians incorrectly in functions.
- Mislabeling legs (swap a/b) producing inverted angle.
- Hyp not > leg (input error).
6. Micro Examples
a=3 b=4 → c=5, A≈36.87°, B≈53.13°
c=13 a=5 → b=√(169−25)=12
7. Mini FAQ
- Two angles only? Need a side to scale triangle.
- Precision drift? Round at end; keep internal doubles.
- Leg vs opposite? Defined relative to chosen angle.
8. Action Tip
When teaching, derive angles with tan (single ratio) first—reduces early rounding vs chaining sin & arccos.